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Universidad Polit́ecnica de Madrid, c/ José Gutíerrez Abascal 2, 28006 Madrid, Spain
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Abstract. Explicit expressions for the coefficients in the expansion of classical discrete
orthogonal polynomials (Charlier, Meixner, Krawtchouck, Hahn, Hahn–Eberlein) into the falling
factorial basis are given. The corresponding inversion problems are solved explicitly. This is
done by using a general algorithm, recently developed by the authors, which is also applied to
this kind of inversion problem but relating thexn basis and the classical (continuous) orthogonal
polynomials of Jacobi, Laguerre, Hermite and Bessel.

Given a polynomial family{Pn(x)}Mn=0 defined by the coefficientsan,m in the expansion

Pn(x) =
n∑

m=0

an,m xm (n = 0, 1, . . . , M)

the corresponding inversion problem requires inversion of the triangular(M +1)× (M +1)

matrix (an,m) in order to representxn in the Pm(x) basis:

xn =
n∑

m=0

ãn,m Pm(x). (1)

When the Pn-family belongs to the so-called classical orthogonal polynomials
(continuous or discrete) some inverse formulae can be obtained [7] by using the
representation ofPn(x) in terms of hypergeometric functions.

Recently [8] (see also [12]), in the case of classicaldiscrete orthogonal polynomials
(Charlier, Meixner, Krawtchouck, Hahn and Hahn–Eberlein) the falling factorial basis,
x [0] = 1 andx [k] = (−1)k(−x)k = x(x − 1)(x − 2) · · · (x − k + 1) ((x)k being the well
known Pochhammer symbol), has been suggested to be more natural than thexn basis,
mainly when these polynomials appear in several problems related to combinatorics and
graph theory [9] and also in quantum mechanics [8, 12].
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In [8, p 53] (although explicit solutions are not given) the authors point out that the
direct problem, i.e. the computation of the coefficientsDm(n) in the expansion

Pn(x) =
n∑

m=0

Dm(n)x [m] (2)

could be solved by using the expression of the classical discrete orthogonal polynomials
in terms of hypergeometric functions. However, there is no information concerning the
solution of the correspondinginverse problem, i.e. obtaining the coefficientsIm(n) in the
expansion

x [n] =
n∑

m=0

Im(n)Pm(x). (3)

The computation of both the coefficientsDm(n) in (2) andIm(n) in (3) are particular
cases of the so-called general connection problem between two families of polynomials
{Pn(x)} and{Qm(x)}, which consists of computing the coefficientsCm(n) in the expansion

Pn(x) =
n∑

m=0

Cm(n) Qm(x). (4)

Under certain conditions [3, 5, 10, 11], this general problem can be solved in a recurrent
way by using an algorithm developed recently by the authors (see, e.g., [11]), which can
be summarized as follows. Assume that:
(a) The polynomialPn(x) in (4) satisfies a difference equation

Lr [Pn(x)] :=
r∑

i=0

Ai(x; n)1iPn(x) = 0 (1f (x) = f (x + 1) − f (x))

where the coefficientsAi(x; n) are polynomials inx of fixed degree (i.e. the degree does
not depend onn).
(b) The family{Qm(x)} in (4) satisfies a finite(h + 2)-term recurrence relation

xQm(x) =
m+1∑

k=m−h

Bm,kQk(x) (5)

where theBm,k are coefficients that are independent ofx. Moreover, thisQm-family also
satisfies a finite structure relation

p(x)1Qm(x) =
m+t−1∑

k=m−s−1

Fm,kQk(x) (6)

where theFm,k are constants,s is a fixed integer andp(x) is a polynomial of degreet .
Then, the action of therth-order difference operatorLr on both sides of the connection

problem (4), gives rise to the relation
n∑

m=0

Cm(n)Lr [Qm(x)] = 0 (7)

which contains terms of the formxj1iQm(x), wherei runs from 0 tor andj depends upon
the degree of the polynomial coefficients characterizing the operatorLr . The appropriate
(and possibly repeated) use of the properties (5), (6) allows us to express all terms appearing
in the latter sum as a linear combination (with constant coefficients) of the polynomials
Qk(x) themselves. Thus, if the family{Qm(x)} satisfies equations (5), (6), it is always
possible to transform (7) into a relation of the form

∑K
m=0 Cm(n)Rm[Qm(x)] = 0. Here,K
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is a positive integer whose specific value depends on the operatorLr and also on relations
(5), (6) (see [11]), andRm denotes a linear operator with constant (independent ofx)
coefficients acting on the indexm. Then, a simple shift of indices leads to the expression

K∑
m=0

Mm[Cm(n)]Qm(x) = 0 then Mm[Cm(n)] = 0 (m = 0, . . . , K).

HereMm denotes a linear operator with constant coefficients acting onm. Thus in this way
a linear system of equations satisfied by the connection coefficients is obtained. Finally,
due to its particular structure (see [11]), from this linear system a recurrence relation (in the
index m only) can easily be devised for the coefficientsCm(n).

Let us consider thedirect problem(2). It is well known [8] that the classical discrete
orthogonal polynomials are solutions of a second-order difference equation given by

σ(x)1∇Pn(x) + τ(x)1Pn(x) + λnPn(x) = 0 (∇f (x) = f (x) − f (x − 1))

whereσ(x) andτ(x) are polynomials of degree at most 2 and 1, respectively, andλn is a
constant. Moreover, the falling factorial basis satisfies the following relations of the type
(5), (6):

x x [m−1] = x [m] + (m − 1)x [m−1] (m > 1)

1x [m] = mx [m−1] (m > 1)

∇x [m] = m(x − 1)[m−1] (m > 1).

Clearly, requirements (a) and (b) are fulfilled in this case, and so our algorithm provides a
recurrence relation for the coefficientsDm(n). Using monic polynomials and the basic data
given in [8], these two term recurrences are solved. The corresponding coefficientsDm(n)

for each monic classical discrete family are listed in table 1.

Table 1. Solutions of the direct problem (2) for all monic classical discrete orthogonal
polynomials.

Pn(x) Dm(n) (0 6 m 6 n)

Charlier: c
(µ)
n (x)

(
n

m

)
(−µ)n−m

Meixner: m
(γ,µ)
n (x)

(
n

m

) (
µ

µ − 1

)n−m

(n + γ − 1)[n−m]

Krawtchouck:k(p)
n (x; N)

(
n

m

)
(−p)n−m(N − n + 1)n−m

Hahn: h
(α,β)
n (x; N)

(
n

m

)
(n − N)[n−m](n + β)[n−m]

(2n + α + β)[n−m]

Hahn–Eberlein:h̃(µ,ν)
n (x; N) (−1)n−m

(
n

m

)
(N − n)[n−m](N + ν − n)n−m

(µ + ν + 2N − 2n)n−m

In the inverse problem(3), the falling factorial basis verifies the following first-order
difference equation:

L1[x [n] ] ≡ (x − n + 1) 1(x [n]) − n x [n] = 0.

Moreover all classical discrete orthogonal polynomials satisfy a three-term recurrence
relation (i.e. a relation of type (5) withh = 1) and also a structure relation (i.e. a relation
of type (6) with s = 0 and t 6 2). Then, our algorithm can also be used in this case.
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Table 2. Solutions of the inverse problem (3) for all monic classical discrete orthogonal
polynomials.

Pm(x) Im(n) (0 6 m 6 n)

Charlier: c
(µ)
m (x)

(
n

m

)
µn−m

Meixner: m
(γ,µ)
m (x)

(
n

m

) (
µ

1 − µ

)n−m

(γ + m)n−m

Krawtchouck:k(p)
m (x; N)

(
n

m

)
pn−m(N − n + 1)n−m

Hahn: h
(α,β)
m (x; N)

(
n

m

)
(N − n)n−m(n + β)[n−m]

(n + m + α + β + 1)[n−m]

Hahn–Eberlein:h̃(µ,ν)
m (x; N)

(
n

m

)
(N − n)n−m(N − n + ν)n−m

(µ + ν + 2N − n − m − 1)n−m

Considering monic polynomials and the explicit expressions of these relations (5), (6) given
in [3, 8], a solvable three term recurrence relation for the coefficientsIm(n) is obtained for
each classical discrete family. The corresponding solutions are listed in table 2.

Finally, it should be noted that the above requirements (a) and (b) for thePn andQm

families in (4) are expressed in terms of the difference operator (discrete case). However,
the algorithm can also be applied if the difference operator is replaced by the derivative
operator, and also if more general linear operators are considered (including Hahn operator).
To illustrate this fact, let us consider the inversion problem (1) for some of the classical
continuous orthogonal polynomials. In this continuous case, the most natural basis isxn

which satisfies the following first-order differential equation:

L1[xn] ≡ x D(xn) − n xn = 0

(
D ≡ d

dx

)
.

Since classical continuous orthogonal polynomials also satisfy relations of the type (5), (6),
our algorithm works, giving recurrence relations for the coefficientsãn,m in (1). For the
sake of completeness, we consider here the Bessel and Jacobi polynomials, the Laguerre
and Hermite ones [1, 7] being well known.

1. Bessel polynomials:Y (α)
n (x). Considering monic polynomials and the data of [5], the

following recurrence relation for the coefficients̃an,m is obtained:

(α + 2m)(1 + α + 2m)(2 + α + 2m)2(3 + α + 2m)(−1 + m − n)̃an,m−1

− 2m(1 + α + 2m)(2 + α + 2m)(3 + α + 2m)(2 + α + 2n)̃an,m

− 4m(1 + m)(α + 2m)(2 + α + m + n)̃an,m+1 = 0

valid for 1 6 m 6 n, with initial conditionsãn,n+1 = 0, ãn,n = 1. This recurrence can be
solved, giving

ãn,m = (−1)n−m

(
n

m

)
2n−m

(n + m + α + 1)[n−m]
(0 6 m 6 n).

Up to a change of normalization (monic polynomials have been considered here) this
expression coincides with that given in [4], where only the caseα = 0 is studied. However,
in this particular case, a misprint has been found in [6, p 73]. For any value of the Bessel
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parameter (α 6= −n, n > 2), the expressions for these coefficientsãn,m have already been
computed in [2, p 538, equation (7.5)], where a misprint is also present.

2. Jacobi polynomials:P (α,β)
n (x). Again for monic polynomials, the recurrence given by

our algorithm for the coefficients̃an,m in (1) in this case is

4m(1 + m)(1 + α + m)(1 + β + m)(α + β + 2m)(2 + α + β + m + n)̃an,m+1

+ (β − α)m(1 + α + β + 2m)3(2 + α + β + 2n)̃an,m

+ (α + β + 2m)4(α + β + 2m + 2)(m − n − 1)̃an,m−1 = 0

valid for 1 6 m 6 n, with initial conditions ãn,n+1 = 0, ãn,n = 1. Solutions for some
particular cases are given in table 3. Explicit hypergeometric representations for all(α, β)

have been computed in [7, vol 1, p 277].

Table 3. Solutions of the inverse problem (1) for monic Chebyshev families.

(α, β) ãn,m (0 6 m 6 n)

( 1
2 , 1

2)


0 if n − m = 2k + 1(

n

k

)
m + 1

(n − k + 1)4k
if n − m = 2k

(− 1
2 , − 1

2)


0 if n − m = 2k + 1(

n

k

)
2m−n+1 if n − m = 2k

( 1
2 , − 1

2)

(
− 1

2

)n−m (
n

[(n − m)/2]

)

(− 1
2 , 1

2)

(
1

2

)n−m (
n

[(n − m)/2]

)
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